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Abstract

Understanding potential risks, vulnerabilities, and impacts to weather extremes and
climate change are key information needs for coastal planners and managers in
support of climate adaptation. Assessing historical trends and potential socio-
economic impacts is especially difficult in the Arctic given limitations on availabil-
ity of weather observations and historical impacts. This study utilizes a novel
interdisciplinary approach that integrates archival analysis, observational data, and
climate model downscaling to synthesize information on historical and projected
impacts of extreme weather events in Nome, Alaska. Over 300 impacts (1990-2018)
are identified based on analyses of the Nome Nugget newspaper articles and Storm
Data entries. Historical impacts centered on transportation, community activities,
and utilities. Analysis of observed and ERAS reanalysis data indicates that impacts
are frequently associated with high wind, extreme low temperatures, heavy snowfall
events, and winter days above freezing. Downscaled output (2020-2100) from two
climate models suggests that there will be changes in the frequency and timing of
these extreme weather events. For example, extreme cold temperature is projected to
decrease through the 2040s and then rarely occurs afterwards, and extreme wind
events show little change before the 2070s. Significantly, our findings also reveal
that not all weather-related extremes will change monotonically throughout the
twenty-first century, such as extreme snowfall events that will increase through
the 2030s before declining in the 2040s. The dynamical nature of projected changes
in extreme events has implications for climate adaptation planning.
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Climatic Change

1 Introduction

Extreme weather events and climate change pose significant risks to society, including impacts
to transportation and infrastructure, public health, economies, and food and water security
(Bouwer 2019). Losses from extreme weather events have grown dramatically over the past
several decades from shifting exposures and vulnerabilities as well as increases in the
frequency of some events, although impacts vary spatially and interannually. Some types of
extreme events are likely to increase in the future (IPCC SREX 2012; USGCRP 2018).

Planners seeking to support climate adaptation are increasingly interested in understanding
how risks and impacts may change (Lempert et al. 2018). Addressing this need requires
understanding historical climatologies and impacts as well as projections of how extreme
events may change. However, risk assessments are complicated by challenges in monitoring
and assessing long-term historical trends in impacts and estimating projected change
(Downton et al. 2005; Morss et al. 2011). This is especially the case in Alaska, where sparse
observational networks limit documentation and analyses of extreme weather events and
impacts are often only documented for individual events (Brunner et al. 2004; Thoman et al.
2020). As such, there is a limited understanding of historical trends and projected impacts from
extreme weather events in the Arctic, though impacts and local observations of change are
documented (AMAP 2017; Larsen et al. 2014; Markon et al. 2018).

Innovative interdisciplinary methods are needed to assess projected socio-economic im-
pacts of extreme weather events in the Arctic. Top-down bottom-up impact assessments,
which bring together western science and local knowledge of places, priorities, and thresholds,
offer significant potential to identify future impacts of local concern and increase opportunities
for improving the usability of scientific information in decision-making (Mastrandrea et al.
2010). Top-down approaches are often based on global or regional climate projections and
assess potential impacts quantitatively; these assessments are often generalized compared with
the complexities of local contexts. Bottom-up approaches assess impacts based on local
understandings of risks and the factors that influence vulnerabilities.

The objective of this paper is to project socio-economic impacts associated with climate
change and extreme weather events based on historical impacts. Our novel approach for
assessing future potential risks brings together archival analysis, historical climatology, and
regional climate downscaling. Our assessment begins by identifying historical socio-economic
impacts of extreme weather events over nearly three decades based on an analysis of newspaper
coverage and a national-level database of storm impacts. Climate model downscaling is then
performed for four types of extreme events that were linked most frequently to socio-economic
impacts: extreme cold temperatures, winter days above freezing, high-speed wind events, and
heavy snowfall events. Potential impacts associated with changes in extreme weather events are
then discussed. The assessment is based in Nome, Alaska, which experiences a variety of
weather-related impacts, has a relatively long and complete record of weather data compared
with other regions in Alaska, and has a newspaper that documents significant local events. We
conclude by discussing implications for planning in Nome and more broadly across Alaska.

2 Literature review

Multiple terms describe weather-related events that adversely affect societal outcomes, includ-
ing extreme weather, hazardous weather, and high-impact weather. These events include

@ Springer



Climatic Change

tornadoes, hurricanes, coastal and winter storms, floods, storm surge, and drought. Definitions
of extreme weather events vary across disciplinary perspectives (Morss et al. 2011). For
example, climatologists and social scientists often define extreme events based on threshold
exceedance values (tails in the climatological distribution) or notable societal impacts, respec-
tively (Changnon 2009; IPCC SREX 2012). There is often overlap across approaches, as
societal impacts can guide the selection of climatological thresholds of extreme events. This
study uses the term weather-related extremes to describe extreme events where information is
climatologically and societally integrated.

2.1 Climate change and extreme weather

Some weather- and climate-related extremes have changed since the 1950s, including fewer
cold days and nights globally and shifts in heavy precipitation events that vary regionally
(IPCC SREX 2012). Projected changes in these extreme events are often described as
monotonic trends (IPCC SREX 2012; USGCRP 2018). In the Arctic, there is strong evidence
that temperatures have increased in terms of climatological means, yearly averages, and daily
highs (AMAP 2017). Higher temperatures have contributed to sea ice loss, more frequent
severe wildfires, and a shortened snow season in Alaska (Thoman et al. 2020; Thoman and
Walsh 2019). There is high confidence in future changes for air temperature, precipitation, and
sea ice in the Arctic. For some variables such as temperature, precipitation, and wind, changes
in extreme values are projected to be larger than changes in the mean (IPCC SREX 2012).

Lack of high-quality long-term data creates challenges in quantifying changes in climate
extremes, especially in the Arctic where observational networks are sparse. Airport observa-
tions provide site-specific data in some rural communities; however, these data may contain
missing values for extreme events. For example, data from some high-speed wind events are
often missing because of instrument riming or other malfunction (Redilla et al. 2019).
Atmospheric reanalyses, which reconstruct the atmosphere state based on assimilating obser-
vational data into a weather prediction model that is continually constrained to be consistent
with available observations, are especially well suited for estimating system states where
observations are limited or have missing data. These data generally represent conditions
averaged over a grid cell, rather than a precise location. The reanalysis used in this study
has grid cells that are approximately 30 km on a side (see Section 4.3).

Projections of climate change, including extreme events, are desired in Alaska to provide
insight into planning efforts (Knapp and Trainor 2015). Global climate models (GCMs)
provide projections of the expected large-scale response to anthropogenic climate change.
However, regional changes are not well resolved within GCMs, which limits their utility for
anticipating impacts on local communities and resources. Dynamical downscaling, which uses
a regional climate model forced at the boundaries by a GCM, provide physically consistent
projections of many variables to explore future climate variability for local applications.

2.2 Socio-economic impacts

Several local- to national-level studies have investigated socio-economic impacts of
historical weather-related extreme events (see Bouwer 2019). This includes research on
the impacts to specific sectors, such as agriculture, public health, and transportation
(Lesk et al. 2016; Mitsakis et al. 2014), and impacts from specific hazards such as
drought, lightning, ice and winter storms, and floods (Ashley and Ashley 2008; Call
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2010; Dow 2010; Downton et al. 2005). Although findings vary based on the hazard
type, geographic region, spatial and temporal scope, and data sources used, multiple
themes emerge from this research. First, deaths, injuries, and economic losses are among
the most frequently reported impacts. Downstream impacts, including food security,
social controversies, economic disruption, and public health, are reported less often
(Bouwer 2019; Morss et al. 2011). Second, economic impacts from extreme weather
events have increased, though these trends are not always directly linked to increases in
event frequency, highlighting the importance of social changes, vulnerability, and adap-
tation in shaping risks (Bouwer 2011). Third, the level of impact stems from a complex
set of cross-scale interactions within coupled socio-ecological systems that lead to
differential vulnerabilities. Vulnerability is influenced by the interaction of sensitivity,
exposure, and adaptive capacity (Turner II et al. 2003). As such, extreme impacts may
result from the combination of several non-extreme events (Leonard et al. 2014). Fourth,
research on the historical socio-economic impacts of extreme weather events in Alaska
often focuses on individual events (AMAP 2017; Brunner et al. 2004). For example, the
2018 record low Bering sea ice extent led to shifting marine mammal die off events and
sightings of animals outside their traditional range, loss or impairment of maritime
subsistence activities, loss of an ice airstrip, and enhanced coastal flooding (Thoman
et al. 2020). Marine ecosystem impacts of recent extreme years in the Pacific subarctic
region have also been documented (Huntington et al. 2020). Other research investigated
weather impacts to water and sanitation systems (Penn et al. 2016).

Some studies have reported on projected losses from extreme weather events. The
majority of these studies focus on risk assessments at the national or international level
(Bouwer 2013; Handmer et al. 2012). These assessments often quantify direct economic
damages and losses, which provide some insight into the severity of extreme weather
events. Other projected indirect losses and impacts, such as injuries, business interrup-
tions, psychological trauma, and community livelihoods, are less often estimated. Key
uncertainties in projecting losses from extreme events include societal changes, green-
house gas emission scenarios, and assumptions regarding the linear relationship between
hazard frequency and impacts.

Multiple methods are used to assess socio-economic impacts from extreme weather-
related events, including interviews, archival analysis, and national-level databases.
National-level databases can provide standardized metrics for assessing and comparing
the spatial and temporal distribution of historical impacts and as a basis for projecting
impacts (e.g., Yuan and Sun 2019). However, these databases often have several
limitations, such as a greater focus on economic impacts and more attention to
immediate impacts (Ashley and Ashley 2008; Gall 2015). The compounding nature
of impacts also makes it difficult to quantify impacts (Leonard et al. 2014). Archival
analysis, such as newspaper coverage, is also well suited for capturing locally relevant
impacts from extreme weather events, though there may be issues of selection or
description bias (Dow 2010; Earl et al. 2004; Ungar 1999). In Alaska, archival analysis
may be especially well suited for assessing historical socio-economic impacts, identi-
fying locally defined thresholds and providing a basis for projecting impacts under
various climate scenarios where long-term local news coverage exists (Duerden 2004).
No studies were identified that used archival analysis, observational climate data, and
regional downscaled climate models as a basis for anticipating socio-economic impacts
of extreme weather events.
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3 Nome, Alaska

The City of Nome provides an ideal location for the examination of historical and projected
weather-related impacts, given their previous experience with weather-related hazards, rapid
rate of climate and environmental change, high quality long-term weather station measure-
ments, and availability of local newspaper coverage. Nome (population 3600) is located on the
southern coast of the Seward Peninsula in northwest Alaska (Fig. 1). The city is a regional and
economic hub for 16 villages. Stakeholders in Nome include the municipality, maritime and
mining operators, and subsistence hunters. Alaska Natives are the largest ethnic population
group, representing over half the population (ADLWD 2018). Wild food resources are an
important nutritional source, which account for 370 pounds per person annually in northwest
Alaska (Fall 2016). Expanding and upgrading the Port of Nome to attract revenue, develop
natural resources, and support national security interests is a priority for some residents, though
increases in shipping pose risks to subsistence. Although Nome does not experience billion-
dollar disasters, the impacts of weather-related extremes are arguably greater on a per capita
basis compared with more urban locations in the contiguous USA, as Nome may only be
accessed via air or water, have limited back-up options when critical infrastructure is damaged
and people are engaged in mixed cash-subsistence economies.

Hourly weather measurements at the Nome airport, which is located approximately 3 km
northwest of downtown Nome, have been made since 1946. The record of hourly observations
is more than 99% complete for the period of this study (1990-2019). Weather observations
were changed to the Automated Surface Observation System in 1998, a change that did not
show significant discontinuities in the temperature and wind reports during the mid-1990s
through 2019 (Redilla et al. 2019).

Nome’s average temperatures increased by 3.4 °C in winter and 1.6 °C in summer over the
past 60—70 years (ACRC 2020; AMAP 2017). Some research has investigated extreme
weather events in Nome, including storm surge intervals and the oceanographic and climato-
logical driving forces behind high-impact storm events in Nome (Mason et al. 1996; Mesquita
et al. 2009). Sea ice regimes across north and northwestern Alaska have shifted over the past
three decades, including delayed freeze-ups and earlier break-up events (Rolph et al. 2018).
Increases in open water days are linked to increased rates of coastal erosion (Overeem et al.
2011). Other research suggests that the frequency of high-speed wind events in northwest
Alaska is increasing, including winds that are too fast for safe hunting in boats (Redilla et al.
2019). Impacts to transportation systems, access to wild foods and subsistence opportunities
from roads and trails, and increased vessel traffic are key weather-related concerns among
Nome residents (Kettle et al. 2017; Parks et al. 2019). In response to these changing
conditions, several local- to national-level planning efforts are occurring in Nome (Birchall
and Bonnett 2020; Kettle et al. 2017; USACE 2019).

4 Data and methods

Our top-down bottom-up assessment of historical and projected socio-economic impacts from
weather-related extremes was based on the analysis of multiple datasets. Archival analyses of the
Nome Nugget newspaper and Storm Data were used to assess historical impacts. Weekly Nome
Nugget publications provided insight into salient local and regional issues. NOAA’s Storm Data
provided a database of weather-related extreme events and impacts that supplemented the
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Fig. 1 Nome, Alaska. Highways outside of Nome are not generally maintained during the winter (October—
May), though these dates are weather-dependent

newspaper assessment and mitigated against selection and description bias (Earl et al. 2004; NOAA
2019). The historical climatology was assessed based on observational and reanalysis data. Projected
changes in weather extremes are based on the outputs from two dynamically downscaled GCMs.
Findings from the archival analysis, historical climatology, and downscaled climate projections were
used to project impacts. These data and methods are detailed below.

4.1 Nome Nugget

A preliminary list of potentially relevant articles was identified based on a manual review of
article titles using keywords related to weather (weather, climate, sea ice, wind, snow, hot,
cold, freezing/frozen, rain, permafrost, storms, breakup), hazards (coastal, erosion, oil spills,
mining, search and rescue, relocate, food security, damage, pollution, flood, dry, drought,
health, fire), infrastructure (roads, utilities, power, electricity, water, sewer, village, port),
subsistence (reindeer, musk-ox, fish, berries, seal, hunter, environment, regulations, fish camp,
birds, walrus, mammals, hunter), and transportation (shipping, roads). This list was developed
based on a review of extreme event impacts identified in local planning documents, including
the comprehensive plan, hazard mitigation plan, and tribal climate adaptation plan (City of
Nome 2012, 2017; Kettle et al. 2017). The full population of newspaper articles was accessed
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from microfiche at the University of Alaska Fairbanks library (1990-2009) and online archives
from the Nome Nugget website (2010-2018). Newspaper articles were coded manually for
themes related to the extreme event type, socio-economic impacts, and year and month of
coverage. Sea storms consisted of both autumn and coastal storms, and snowstorms consisted
of events with both wind and snow. Extreme event types were coded based on the journalist’s
description, rather than the historical climatology. Weather events and impacts occurring fewer
than five times were labeled as “other.” News coverage of impacts occurring at least 2 weeks
after the extreme event occurred were coded as “other,” rather than the publication month. In
total, 225 articles were identified that discussed weather-related impacts.

4.2 Storm data

Socio-economic impacts in Storm Data were identified based on a review of paper publica-
tions (1990-1995) and the online database (1996-2018), as the online database only included
convective events prior to 1996 (NOAA 2019). This review identified 114 Storm Data entries,
34 of which discussed socio-economic impacts. Impacts from identical event narratives were
counted once when individual storm events were entered multiple times under different hazard
event types. This resulted in 26 unique narratives describing impacts. Event types were
classified based on Storm Data categories, except for the following merged categories: wind
(strong wind and high wind), snowstorm (blizzard and winter storm), and flood (coastal flood
and flood). Events and impacts occurring fewer than five times were classified as “other.”

4.3 Climatology and projections

The assessment of historical climatology (1990-2019) and decadal projections of change
(2020-2100) focused on four types of extreme weather events associated most frequently
with impacts identified in the archival analysis in Nome: extreme cold temperatures, winter
days above freezing, heavy snow, and high winds (Fig. 2). Two sources of data were analyzed
to provide a complementary assessment of the historical climatology: quality-controlled hourly
weather observations from the Nome airport and 30-km spatial resolution hourly ERAS
(European Center for Medium-Range Weather Forecasting Reanalysis for the Atmosphere,
version 5) reanalysis data (C3S 2017; ISU 2020).

For decades through 2100, projections of hourly air temperature, snowfall, and winds were
obtained from a dynamical downscaling of NOAA’s Geophysical Fluid Dynamics Laboratory
(GFDL) Climate Model, version 3 (CM3) and Community Climate System Model, version 4
(CCSM4) as described by Bieniek et al. (2018) and Lader et al. (2018). Selecting models at the
opposite ends of the sensitivity spectrum (CM3 high end, CCSM4 low end) captured a range
of uncertainty associated with model selection and minimized the computational resources
required for downscaling. Previous evaluations suggest that these models capture the spatial
distributions of temperature and precipitation and are among the models that most accurately
reproduce the historical climate of Alaska (Lader et al. 2017; Walsh et al. 2018). The
greenhouse gas forcings of these model simulations followed the Representative Concentration
Pathway (RCP) 8.5 scenario, which are the scenario most closely tracked by recent emissions.

The reanalysis and GCM projection data were dynamically downscaled using the Ad-
vanced Research core of the Weather Research and Forecasting (WRF) model over the Alaska
domain (Bieniek et al. 2016; Skamarock et al. 2008). The model provided 20-km spatial
resolution data that better accounts for the complex Alaska topography than the relatively
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Fig. 2 Weather-related extreme events linked to socio-economic impacts in Nome, Alaska (1990-2018). The
wind category only included extreme events where wind was the sole hazard

coarse (100-200 km) reanalysis or GCM data (Bieniek et al. 2016). The output was saved at
hourly time increments to enable temporal resolution of extreme events. The WRF model was
reinitialized at 48-h intervals with an additional 6-h spin-up time and a spectral nudging
procedure that constrained the downscaled fields to be consistent with the driving reanalysis or
GCM. The downscaling parameterizations were selected to optimize performance over Alaska
(Zhang et al. 2016). Clouds and precipitation in the WRF model were parameterized by the
Morrison 2-moment and Grell 3D cumulus schemes (Morrison et al. 2009). Shortwave and
longwave radiative effects were parameterized by the Rapid Radiative Transfer Model for
GCMs (Tacono et al. 2008). Boundary and surface layer processes utilized the Mellor-Yamada-
Janji¢ (Janji¢ 1994) and Janji¢ Eta (Monin-Obukhov) schemes, respectively. A thermodynam-
ic sea ice model was coupled with the NOAA land-surface model within WRF to better
account for the thermal conditions over sea ice (Zhang and Zhang 2001). A quantile mapping
procedure addressed systematic errors by adjusting the model’s historical distribution of each
variable to match the corresponding historical distribution from ERAS and then reapplying the
adjustment factors to each quantile of the future distributions (Redilla et al. 2019). The quantile
mapping used the ERA grid cell with its center closest to Nome.

Relative to ERA-Interim, downscaling improves the spatial representation of temperature
and precipitation in Alaska’s complex terrain (Bieniek et al. 2016). Additionally, the spatial
distributions of temperature and precipitation were consistent with the few available gridded
observational datasets that account for topography. The downscaled precipitation generally
exceeded observationally derived estimates in all seasons over mainland Alaska, while it was
lower than observations in the southeast.

Thresholds were defined based on locally specified values when possible. Extreme cold
temperatures were set as days when the minimum temperature was less than or equal to —
34.3 °C (—30 °F)—a value discussed widely in a Nome Nugget article entitled “Nome in long
deep freeze” where multiple impacts to activities, utilities, and transportation were referenced
(Haecker 2012). The criterion for an above-freezing day during January—February was the daily
maximum temperature 0 °C (32 °F) or higher. The snow depth threshold was set at 20.3 cm (8 in.) of
snowfall—a slightly lower value than specified in Nome’s Hazard Mitigation Plan (12 in.) in order
to capture major snowfall events that also contribute to overall snow accumulation (City of Nome
2017). High-speed wind events were defined as occurrences of winds 48.3 km/h (30 mph) or greater
for at least 10 consecutive hours. This combination of speed and duration results in a set of storm
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events for which the average return interval is approximately 1 year (Redilla et al. 2019). We note
that station reports of variables such as temperature, snowfall/snow depth, and wind speed are made
in English units (°F, inches, miles per hour) in the USA. Accordingly, these units typically appear in
media coverage (e.g., Nome Nugget) of weather and climate events. While the corresponding
thresholds used here are integer values in English units, the equivalents in metric (SI) units (cm,
km/h) have non-integer values. For completeness, we generally provide the values in both units.

5 Socio-economic impacts in Nome

Over 300 socio-economic impacts (n =322 Nome Nugget, n=44 Storm Data) from extreme
weather-related events were identified in Nome between 1990 and 2018, including impacts to
transportation, activities, utilities, and building structures (Fig. 3). Impacts occurred year-round, with
the most in January and August and the fewest in July (Fig. 4). Impacts were most often related to
wind, sea storms, snowstorms, snow, and temperature extreme events (Fig. 2).

Annual reported impacts in the Nome Nugget increased between 1990 and 2018 (Fig. S —a
trend consistent with other research on losses from extreme weather events (Bouwer 2019).
Although this increase may be in part related to increased media attention that led to more reporting
as well as societal changes that contributed to increased vulnerability, these changes may also be
related in part to the historical climatology. For example, both the annually reported impacts from
wind-related events (wind, sea storms, and winter storms) and the number of high-speed wind
events increased between 1990 and 2018. The high number of impacts reported in 2004, 2005, and
2011 were associated with major coastal storms and disasters (State of Alaska 2018).

There were some differences in the types and number of impacts reported across the datasets.
Few impacts to subsistence activities, mining, and aviation were reported in Storm Data. Impacts in
Storm Data were most frequently reported during the autumn, while impacts in the Nome Nugget
were reported most often in January and August (Fig. 4). The limited number of reported impacts in
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Fig. 3 Socio-economic impacts from weather-related extremes in Nome, Alaska (1990-2018). Major categories
of impacts compiled from the Nome Nugget and Storm Data included transportation, activities, utilities, and
damaged buildings. Other impacts included those that were identified fewer than five times
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Fig. 4 Monthly distribution of socio-economic impacts in Nome, Alaska, from weather-related extremes (1990—
2018). News coverage of impacts occurring at least two weeks after the extreme event occurred were coded as
“other,” rather than the publication month

Storm Data for Nome prior to 1996 (four entries and three impacts from 1990 to 1995) was likely
related to the modernization of the National Weather Service in the mid-1990s, which assigned
Storm Data entries to the then newly established Warning Coordination Meteorologist position or
their designee (Friday 1994; NWS 2018). Socio-economic impacts reported in the Nome Nugget
and Storm Data are detailed below. Unless otherwise specified, n-values refer to the Nome Nugget.

5.1 Transportation
Impacts to roads, aviation, the port, and off-road trail systems were among the most frequently

reported impacts. Impacts to roads centered on infrastructure (n = 30), clearing snow (n = 30), and
hazardous driving and walking conditions on icy or flooded roads (n=20). Impacts to road

30

Count

1990 1994 1998 2002 2006 2010 2014 2018

® Nome Nugget 0O Storm Data

Fig. 5 Trend in socio-economic impacts from weather-related extremes in Nome, Alaska (1990-2018). Dashed
line is linear trend for reported impacts in the Nome Nugget
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infrastructure occurred primarily from sea storms that led to potholes and washouts and from warm
spring temperatures following above-average snowpack years that created overflow. Winter thaw
events also led to icy roads and unsafe travel. Although each of the three gravel highways leaving
Nome experienced weather-related impacts, the Nome-Council Road was especially vulnerable to
washouts, erosion, and closures (Mason et al. 1996). For example, road closures from coastal storms
in October 2004 and November 2011 contributed to 10 occupied residences in the Council area
being isolated from Nome and $24 M in road damages, respectively. Snow removal was a major
expense (overtime wages and fuel and equipment costs) to ensure safe travel within Nome and
provide access to surrounding villages in the spring, especially during heavy snow years, back-to-
back storms, or when the wind blew snow back onto roads after removal. In describing the effect of
wind on snow depth and the need to rebuild sections of the gravel highway system in a manner that
accounts for local wind a transportation specialist stated:

Nome and the area isn’t like most areas in the state. If it snows a foot, there is usually
only a foot of snow in the road cut, but up there the snow comes in horizontally and cuts
are completely filled causing big problems come clearing time (Leeper 1999).

Limited highway access to surrounding areas in the spring due to impassable roads from
snowfall also posed an economic threat to mining and tourism.

Air transportation was often impeded by limited visibility, which led to canceled and delayed
flights lasting from a few hours to days. Cargo flight delays led to shortages of goods at grocery
stores, mail delays, and business losses (e.g., suspended salmon purchasing operations). Canceled
passenger flights contributed to individuals missing personal and business appointments as well as
medical appointments for procedures not available in Nome. The closure of the longer runway from
frost heaving required that incoming flights use the shorter runway, which has a lighter payload
capacity and more stringent visibility requirements.

The Port of Nome experienced multiple infrastructure impacts to the causeway and jetty, docks,
and causeway bridge. For example, sea storms in 2004 and 2011 led to $3 M and $500 K in repairs
to the Nome Jetty, respectively. Sea ice movement also damaged docks, including broken fendering
welds, bowing sheet piling, and ladders. Impacts to port infrastructure, coupled with sea ice blocking
the port entrance and sedimentation from sea storms, contributed to multiple impacts. This included
reduced draft depth, limited port access, shipping delays, vessel rerouting, reduced delivery
frequencies and back-haul voyages (especially if shipments could not be completed before freeze-
up), and the loss of city revenue from port fees associated with fewer boats using the port (USACE
2019). For example, sea ice delayed the delivery of fuel to Nome in June 2008 and December 2011,
the latter of which resulted in legal issues between shipping company and local fuel distributor.
Other impacts included damaged barges and vessels, both inside the port and at Cape Nome.

Impacts to trails centered on industrial (mining) and local community activities (limited
access to subsistence, travel between villages, and dog racing). For example, unusually warm
wintertime temperatures often created overflow and open water on sea ice, lakes, and rivers,
which led to dangerous travel conditions. Similarly, limited snow cover during the winter
impeded travel for moose hunters and search and rescue operations via snowmobiles. Wash-
outs from coastal storms also limit all-terrain vehicle (ATV) use on trails.

5.2 Activities

Multiple activities were affected by extreme weather-related events, including business and munic-
ipal closures (= 23), subsistence (n =21), and mining (n = 13). Over half (57%) of the subsistence
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impacts centered on access and safety, such as impassable roads or trails that limited travel to fish
camps and hunting grounds. Unpredictable ice conditions limited days for hunting marine mammals
that use ice as a resting platform. Financial costs and safety risks also increased as hunters were
forced to travel greater distances. Additionally, there was a temporal mismatch between the
availability of wild foods and when regulations permit harvest. Other impacts included restricted
caribou harvests from rain on snow events, declining moose population health due to snow and
extreme cold spells, harmful algal blooms, and damaged fish camps and meat drying racks.

Weather and sea-ice related impacts to mining were primarily related to operational days
(n=28). For offshore winter and summer mining, strong winds and unstable sea ice conditions
often limited the number of operation days. For onshore mining, operational days were
affected by temperature, snow, and runoff, such as deep snow on roads limited access to
mines during the spring. Operational days were further reduced by impacts to equipment and
infrastructure, including frozen dredge ponds and water supplies, unsafe travel on unpaved
backroads from early thawing, and stranded equipment on sea ice. Some infrastructure impacts
adversely affected water quality, such as excavating frozen ditches with heavy equipment that
led to the release of sediments and increased turbidity.

Other activity impacts included fish and wildlife monitoring by the State of Alaska (n=9),
commercial fishing and fish processing (n=15), construction (n=35), and dog racing (n=4).
For example, salmon counting weirs were often damaged or non-operational due to high water,
which contributed to underestimating escapement counts. Harsh winters also led to difficulties
estimating moose populations, which led to reductions in available hunting permits. A late sea
ice breakup contributed to dangerous fishing conditions and less accessible herring, which
resulted in local fishers being without one of their primary sources of income within a mixed
cash-subsistence economy. Similarly, sea storms reduced the number of fishing days for
crabbers, which in one case contributed to a fish processing plant closure. Other impacts
include damaged boats and fishing gear as well as building and construction delays from cold
temperatures, heavy summer rains, and sea ice.

5.3 Utilities

Impacts to the Nome Joint Utility System (NJUS) centered on disconnected power lines,
blown fuses in electrical feeders and transformers, dislodged poles, and disruptions in the fuel
supply for generators. Power lines often snapped or dislodged (» = 12) during high-speed wind
events and were especially vulnerable when winds were accompanied by ice accumulation as
this led to greater weight on lines. Extended periods of sub-zero temperatures cooled fuel bulk
diesel storage tanks, which slowed the delivery of fuel to day tanks. Maintaining and replacing
weather-damaged infrastructure was an ongoing expense for the NJUS, such as a 2004 coastal
storm that led to $150,000 in damages to power lines, poles, and construction materials. Power
outages often contributed to temporary business and municipal closures, Internet loss, and
frozen residential water pipes. Impacts were often greater when power losses were accompa-
nied by low temperatures, as this often led to frozen water pipes. For example, power loss from
a 2008 snowstorm with sub-zero temperatures contributed to 15 reported cases of frozen pipes.
Other downstream impacts resulting from the loss of power, such as carbon monoxide
poisoning from improper generator use and fires from people trying to thaw pipes were not
identified (Call 2010). Few impacts to stormwater and wastewater (n = 8) were reported.
Frozen water pipes and clogged sewer vents associated with extended periods of low temper-
atures were a common challenge in Nome, even in the absence of power loss. As stated by a
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reporter, “It’s one of those months when every conversation in Nome starts with ‘are your drains
working’ ... a normal office day at -30°F begins with the chore of firing up that hair dryer to thaw
out the toilet” (Haecker 2012). The likelihood of frozen pipes was related to the insulation
surrounding the pipes, snow cover, electricity outages, and plugged heater fuel lines.

5.4 Other impacts

Other impacts included structural damage to buildings (n = 17), impacts to the sea wall and
coastal erosion, digging out heater exhaust pipes and vents following heavy snowfall events,
low snowfall years causing economic losses for snowmobile companies and difficulties in
search and rescue operations, and ruined equipment (e.g., generators) and belongings at
subsistence camps. Some weather-related impacts discussed in local planning documents were
not identified in the Nome Nugget nor Storm Data, including releveling houses and structures
from permafrost thaw and collapsed roofs from heavy snowfall (e.g., City of Nome 2017,
Kettle et al. 2017).

6 Historical climatology and projections in Nome

Analysis of the observational data and projections centered on extreme cold, winter days above
freezing, wind, and snowfall events as these extreme events were often linked to socio-economic
impacts (Fig. 2). There were some differences in the event frequency between the observed and
ERAS reanalysis datasets and between the two climate model projection outputs (Fig. 6). The
historical frequency of extreme events and projected changes are discussed below.

Extreme low temperature days were projected to decline rapidly by the 2020s and not occur by
the 2040s. Even in the most recent decade of the 2010s, most extreme low temperature events
occurred prior to 2013. The rapid decline in low temperature days beginning in the 2010s is likely
related to the loss of sea ice cover (Thoman et al. 2020). The frequency of observed extreme low
temperature events was similar across both models. Winter days (January and February only) when
the maximum temperature exceeds freezing is projected to increase in each of the decades through
the 2090s. Because the average January and February temperatures at Nome are well below freezing
in the present climate, the daily maximum temperature is presently below freezing on most days in
these months. The ongoing and projected climate warming shifts the distribution to the right,
increasing the frequency of above-freezing daily maximum temperatures. This shift of the distribu-
tion is similar in both models.

Heavy snowfall events were projected to become more frequent through the 2030s and then
decline after the 2040s, eventually resulting in fewer events than in the historical period (1980s—
2010s). The increase in heavy snowfall events in the 2030s was likely related to the projected
increase in total precipitation across Alaska and the Arctic (USGCRP 2018). The decrease in
heavy snow events in the latter half of the twenty-first century was likely related to the warming-
induced change in rain/snow partitioning. The possibility of more frequent heavy rain events at
Nome during the cold season raises the possibility of additional hazards related to cold-season
flooding and/or icing. The two models were consistent in their projections of short-term (to about
2040) increases followed by longer-term decreases in heavy snow frequencies, although the
spread between the two models becomes large by the 2040s when one model (CM3) predicts an
carlier onset of the reduced-snowfall regime. The across-model consistency contrasts with the lack
of agreement in historical decadal variations depicted by the two observational sources, although
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Fig. 6 Historical climatology and projections of extreme events in Nome, Alaska. The count represents the
number of days in each decade with extreme cold, winter days above freezing, heavy snowfall, and high-speed
wind events. Light gray bars represent ERAS reanalysis, dark gray bars represent observed data from the Nome
airport, and white bars represent averages of downscaled simulations forced by two global climate models (CM3
and CCSM4). Whiskers show the spread between the two models. The CM3 and CCSM4 model projections for
decades from 2020 to 2090 compare as follows: (a) In every decade containing any projected cold extremes
(=30 °F or colder), CCSM4 projected the larger number of events; (b) CM3 projected more winter days above
freezing in every decade; (¢) CM3 projected more heavy snowfall events in the 2030s, 2040s, and 2080s, while
CCSM4 projected more events in the other decades (no difference in 2090s); (d) CM3 projected more high-speed
wind events for all decades except the 2040s (no difference in the 2020s)

both sources agreed on historical average frequencies of about four events per decade. Differences
in historical decadal variability was likely related to the influence of wind and blowing snow that
often results in gauge undercatch (McAfee et al. 2013).

The frequency of high-speed wind events per decade at Nome nearly doubled from
the 1990s to 2010s according to both the station data and the ERAS reanalysis. Differ-
ences between the observed record and ERAS were likely related to the underreporting of
high-speed wind events at the Nome airport due to anemometers shutting down at higher
wind speeds and heavy wet snow impeding the movement of the cup anemometer
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(Redilla et al. 2019). High-speed wind events are not projected to change notably
through the 2060s relative to the historical climatology from the ERAS reanalysis.
Beginning in the 2070s, there is less certainty regarding how the number of projected
high-speed wind events will change. Although the projection showed an increase of
high-speed wind events from 2070 to 2100, the increase was essentially a small residual
resulting from the differences in the CM3 and CCSM4 climate model outputs (in all
decades except 2040, the CCSM4 model projected more extreme wind events). This
result was consistent with the lack of agreement among GCMs on the future changes in
storm characteristics (AMAP 2017; Walsh et al. 2020).

7 Projected weather-related extreme impacts

Projections of extreme cold temperatures, winter days above freezing, high wind, and heavy
snowfall—the events linked to historical impacts reported in the Nome Nugget and Storm Data—
have implications for potential future impacts in Nome. Below we describe projected impacts based
on shifts in the climatology of these extreme events, which provides insight into how potential
impacts may change (Bouwer 2019; Morss et al. 2011). We also discuss how these impacts may be
influenced by other long-term changes in climate, given the compounding and interacting nature of
extreme weather-related hazards (Leonard et al. 2014). We then discuss the implications of these
projected changes in extreme events for planning in Nome. Shifts in socio-economic conditions and
adaptation are not incorporated into the discussion of potential impacts.

The city’s cost for snow removal on roads from heavy snowfall events may increase through
the 2030s before declining in the 2040s to 2090s. Coastal roads that provide access to seasonal
subsistence villages and camps, such as the Nome-Council Road, may be vulnerable to
increased erosion in the near term due to increased wave action from high-speed wind events
beginning in the 2070s. However, there is lack of agreement among our downscaled models
regarding future changes in storm characteristics. Coastal erosion may be further exacerbated
from sea ice loss in the Bering Sea and a longer open water season (Thoman et al. 2020).

There may be fewer water utility freeze-ups at residential homes as a result of fewer (rare)
projected days below —30 °F in the 2020s, relative to 1990-2010. At the same time, water
pipes may be more susceptible to freezing with less snowfall accumulation for insulation.
Impacts to power and electricity from high-speed wind events are not likely to change till the
end of the twenty-first century, as the climate models provide no basis for anticipating changes
in the frequency of high-speed wind events through the 2060s. Dangerous travel conditions
during January and February are also likely to increase in association with melted snow and
overflow conditions, which are linked to temperatures above freezing.

The types of historical weather events linked to impacts may also shift in Nome. For
example, impacts from freezing rain and rain-on-snow events, which were not reported often
in the Nome Nugget, nor analyzed in this study, may become more frequent with increasing
winter temperatures (Bieniek et al. 2018). Such events could lead to increases in unsafe driving
conditions, canceled or delayed flights, food shortages for caribou, broken electrical lines, and
limited access to subsistence foods. Additionally, future sea ice loss, which was not modeled in
this study, is likely to shape future risks. For example, impacts to the physical infrastructure of
the Port of Nome may increase over the next few decades as the proportion of sea storms over
open water increases due to sea ice loss (Wang et al. 2012). Additionally, impacts from sea
storms to buildings and mining activities may increase over the next few decades, given loss of

@ Springer



Climatic Change

sea ice in Norton Sound (Fang et al. 2018; Thoman et al. 2020). Impacts to road transportation
associated with potential increases in the rate of snowmelt during spring break-up were not
assessed because of the difficulty in determining thresholds. Break-up characteristics (duration,
timing) represent areas of additional research needed to assess future impacts.

The projected changes in extreme weather-related events have implications for climate
adaptation planning in Nome. For winter days above freezing, additional funds may be needed
for the treatment and maintenance of icy roads. Similarly, additional budgeting for snow
removal may be required through the 2030s before declining in the 2040s as heavy wintertime
precipitation events shift from snow to rain (Bieniek et al. 2018). The non-monotonic shifts in
extreme snowfall events in Nome suggest that planning choices that focus on easily changed
(or reversed) actions may be appropriate when communities must live with potential path-
dependent consequences of decisions (Hallegatte 2009). Planning choices that focus on cost-
benefit analysis should account for how the economic utility of strategies may be affected by
the timing of non-monotonic shifts in the frequency of extreme events. Changes in wind are
not likely to have a significant impact on planning in Nome as potential changes are not likely
to occur until 2060, which is beyond typical planning windows, and there is uncertainty
regarding the direction and magnitude of change.

8 Conclusion

This study revealed multiple weather-related impacts from extreme events to transportation,
utilities, activities, and subsistence in Nome, Alaska. Interpretation of downscaled climate model
outputs from high-speed wind events, heavy snowfalls, extreme cold temperature, and winter
temperature days above freezing—four extreme weather events linked to socio-economic impacts
in the historical climatology—suggests that there will be some changes in the frequency of
extreme weather-related events in the decades to come. Extreme cold events are expected to
continue a decreasing trend, high-speed wind events show no notable changes over the next few
decades, winter days above freezing are expected to increase, and heavy snowfalls may increase
through the 2030s before declining in the 2040s. In all likelihood, the seasonality, duration, and
other characteristics of these events will also change. In other words, not all weather-related
extremes will change monotonically throughout the twenty-first century (IPCC SREX 2012;
USGCRP 2018). These findings suggest that other communities’ planning for climate impacts
could expect differences in the direction and frequency of future extreme events and impacts.

The top-down bottom-up approach used in this study enabled the integration of archival
analysis, local understanding of priorities and thresholds, observational data, and downscaled
climate projections to assess historical and projected socio-economic impacts from extreme
weather-related events (Mastrandrea et al. 2010). This integrated assessment approach offers
significant potential for focusing downscaled climate projections on extreme weather-related
events that are grounded in community priorities. Extension of this methodology to other
regions is dependent on the availability of local information to guide climate projections of the
extreme events that are aligned with local impacts of concern and the identification of
thresholds. In Alaska, some newspaper coverage may be available in other regional hub
communities in northwest and northern Alaska for the past 30 years to provide insight into
local context (e.g., Arctic Sounder). In regions where newspaper coverage is not available,
alternative methods for obtaining information on local priorities, concerns, and thresholds
could include combinations of interviews and reviews of local planning documents.
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